|| DukeMedNews || Dopamine Imbalances Cause Sleep Disorders in Animal Models of Parkinson's Disease and Schizophrenia
|| DukeMedNews || Dopamine Imbalances Cause Sleep Disorders in Animal Models of Parkinson's Disease and Schizophrenia
First, the researchers treated the mice with a chemical that stops the production of dopamine entirely. In fairly short order, the mice had used up their initial supply of dopamine and were running on empty.
The mice became rigid, immobile, and unable to sleep or dream, displaying symptoms similar to those experienced by patients with Parkinson's disease, the researchers said.
The researchers then measured the electrical activity in each animal's hippocampus, the region of the brain known to be involved in emotion and memory, during three major brain states: wakefulness, quiet sleep and dreaming (also known as rapid eye movement sleep). Using electrodes finer than a human hair implanted into individual neurons, the researchers could monitor signals passed among hundreds of neurons in the treated mice. They found a lack of dopamine completely suppressed brain activity and behaviors associated with quiet sleep and dreaming.
To verify that the sleep disturbances were caused by a lack of dopamine, the researchers gave the mice L-dopa, a drug used to increase the levels of dopamine in Parkinson's disease patients. The treated animals regained the brain patterns and behaviors associated with sleep and dreaming, demonstrating the critical role dopamine plays in the sleep-wake cycle, according to the researchers. Further pharmacological testing revealed that L-dopa exerted its effects by docking at a specific site, called the D2 receptor, on the surface of the neurons.
"Sleep disorders may be the first sign of Parkinson's disease," said lead study investigator Kafui Dzirasa, an M.D.-Ph.D. student working in Nicolelis's laboratory.
"By further studying the sleep patterns in animal models of Parkinson's disease, we hope to come up with a sleep diagnosis test that could detect the early signs of the disease years before the major symptoms appear," he said.
The study also provided insights into the biology underlying schizophrenia, the researchers said. They found that the excess dopamine in the brains of the mice generated patterns of brain activity that made it look as though the animals were experiencing brain activity associated with dreaming when they were actually awake.
"One of the preeminent ideas of classical psychiatry is that people who had hallucinations, such as schizophrenics, were actually dreaming while they are awake," Nicolelis said. "Our results give some initial biological evidence for this theory."
First, the researchers treated the mice with a chemical that stops the production of dopamine entirely. In fairly short order, the mice had used up their initial supply of dopamine and were running on empty.
The mice became rigid, immobile, and unable to sleep or dream, displaying symptoms similar to those experienced by patients with Parkinson's disease, the researchers said.
The researchers then measured the electrical activity in each animal's hippocampus, the region of the brain known to be involved in emotion and memory, during three major brain states: wakefulness, quiet sleep and dreaming (also known as rapid eye movement sleep). Using electrodes finer than a human hair implanted into individual neurons, the researchers could monitor signals passed among hundreds of neurons in the treated mice. They found a lack of dopamine completely suppressed brain activity and behaviors associated with quiet sleep and dreaming.
To verify that the sleep disturbances were caused by a lack of dopamine, the researchers gave the mice L-dopa, a drug used to increase the levels of dopamine in Parkinson's disease patients. The treated animals regained the brain patterns and behaviors associated with sleep and dreaming, demonstrating the critical role dopamine plays in the sleep-wake cycle, according to the researchers. Further pharmacological testing revealed that L-dopa exerted its effects by docking at a specific site, called the D2 receptor, on the surface of the neurons.
"Sleep disorders may be the first sign of Parkinson's disease," said lead study investigator Kafui Dzirasa, an M.D.-Ph.D. student working in Nicolelis's laboratory.
"By further studying the sleep patterns in animal models of Parkinson's disease, we hope to come up with a sleep diagnosis test that could detect the early signs of the disease years before the major symptoms appear," he said.
The study also provided insights into the biology underlying schizophrenia, the researchers said. They found that the excess dopamine in the brains of the mice generated patterns of brain activity that made it look as though the animals were experiencing brain activity associated with dreaming when they were actually awake.
"One of the preeminent ideas of classical psychiatry is that people who had hallucinations, such as schizophrenics, were actually dreaming while they are awake," Nicolelis said. "Our results give some initial biological evidence for this theory."
Comments
A bad night sleep can have an adverse affect on adult’s performance at work the next day. In the same way, if there is a disturbed sleep for high school or middle school students, it affect’s their school performance.
According to the research published in the Journal of clinical sleep medicine, students who experience sleep problems are more likely to get bad grades in school. It is examined that students of middle class and high class have sleep complaints frequently.
The students who got bad grades were more likely to have restless legs syndrome, difficulty concentrating during the day, difficulty waking up in the morning, excessive sleepiness during the day, snoring, and sleeping in the class.
A good night sleep can change your performance at work and grades at school…you don’t have to pay money for these 101 tips…just read them …
http://www.sleepdisordersguide.com/blog/good-night-sleep-101-ways/