ScienceDaily: Researchers Identify Decision-Making Area Of The Brain; Results Will Aid Treatment For Brain Disorders Such As ADHD
ScienceDaily: Researchers Identify Decision-Making Area Of The Brain; Results Will Aid Treatment For Brain Disorders Such As ADHD
Science Daily — Kingston, ON (November 4, 2002) -- New research from investigators in the Centre for Neuroscience Studies at Queen's University and the Centre for Brain and Mind at The University of Western Ontario has provided the first neuro-imaging evidence that the brain's frontal lobes play a critical role in planning and choosing actions.
Their study is published today in the journal Nature Neuroscience.
The research team has found that a small region in the frontal lobe of the human brain is selectively activated when an individual intends to make a particular action and not another. These findings help explain why individuals with frontal lobe damage sometimes act impulsively and often have problems making decisions.
"We have identified signals in the normal human brain that we can now investigate in patients with neurological or psychiatric disorders that affect frontal lobe function," says team member Doug Munoz, professor in the Departments of Physiology and Psychology at Queen's, and holder of a Canada Research Chair in Neuroscience. "For example, subjects diagnosed with attention-deficit hyperactivity disorder should produce different patterns of brain activation that we can identify. We will then be able to see if these patterns change when they are treated with medication."
Science Daily — Kingston, ON (November 4, 2002) -- New research from investigators in the Centre for Neuroscience Studies at Queen's University and the Centre for Brain and Mind at The University of Western Ontario has provided the first neuro-imaging evidence that the brain's frontal lobes play a critical role in planning and choosing actions.
Their study is published today in the journal Nature Neuroscience.
The research team has found that a small region in the frontal lobe of the human brain is selectively activated when an individual intends to make a particular action and not another. These findings help explain why individuals with frontal lobe damage sometimes act impulsively and often have problems making decisions.
"We have identified signals in the normal human brain that we can now investigate in patients with neurological or psychiatric disorders that affect frontal lobe function," says team member Doug Munoz, professor in the Departments of Physiology and Psychology at Queen's, and holder of a Canada Research Chair in Neuroscience. "For example, subjects diagnosed with attention-deficit hyperactivity disorder should produce different patterns of brain activation that we can identify. We will then be able to see if these patterns change when they are treated with medication."
Comments