Protein behind overeating identified -Health/Science-The Times of India
WASHINGTON: Researchers, for the first time, have demonstrated in mice that a protein called brain-derived neurotrophic factor (BDNF) is critical in managing satiety, and is the main cause behind obesity and overeating.
The study, led by Maribel Rios, PhD, and assistant professor of neuroscience at the Sackler School of Graduate Biomedical Sciences at Tufts University School of Medicine in Boston and colleagues, revealed that it is the lack of BDNF that is responsible for triggering overeating and obesity.
Researchers showed that the mice in which the BDNF gene was deleted in two of the primary appetite-regulating regions of the brain ate more and became significantly heavier than their counterparts.
"Prior to this study, we knew that the global lack of BDNF and/or its receptor during development leads to overeating and obesity in young mice. However, it remained unclear and controversial whether BDNF mediated satiety in adult animals. Our recent findings demonstrate that BDNF synthesis in the ventromedial (VMH) and dorsomedial hypothalamus (DMH) is required for normal energy balance," said Rios.
"Additionally, because the mice examined in this study were genetically altered in adulthood, we were able to establish that BDNF acts as a satiety signal in the mature brain independently from its putative actions during development of the brain.
WASHINGTON: Researchers, for the first time, have demonstrated in mice that a protein called brain-derived neurotrophic factor (BDNF) is critical in managing satiety, and is the main cause behind obesity and overeating.
The study, led by Maribel Rios, PhD, and assistant professor of neuroscience at the Sackler School of Graduate Biomedical Sciences at Tufts University School of Medicine in Boston and colleagues, revealed that it is the lack of BDNF that is responsible for triggering overeating and obesity.
Researchers showed that the mice in which the BDNF gene was deleted in two of the primary appetite-regulating regions of the brain ate more and became significantly heavier than their counterparts.
"Prior to this study, we knew that the global lack of BDNF and/or its receptor during development leads to overeating and obesity in young mice. However, it remained unclear and controversial whether BDNF mediated satiety in adult animals. Our recent findings demonstrate that BDNF synthesis in the ventromedial (VMH) and dorsomedial hypothalamus (DMH) is required for normal energy balance," said Rios.
"Additionally, because the mice examined in this study were genetically altered in adulthood, we were able to establish that BDNF acts as a satiety signal in the mature brain independently from its putative actions during development of the brain.
Comments