Skip to main content

Epilepsy’s Big, Fat Miracle - Ketogenic diet as treatment

Epilepsy’s Big, Fat Miracle - NYTimes.com

Starvation had long been one approach to treating epilepsy. Deny the patient food for, say, a week and often their seizures went away. But there were obvious limits on how long starvation could be used as a treatment. In the 1920s, researchers at the Mayo Clinic, looking for a way to treat diabetics, figured out that it was not fasting per se that helped control seizures. Rather, they found that it was what the body did during an extended fast that helped control them. Deprived of food, the human body starts burning body fat as fuel, and it was that process of ketosis that somehow had the antiepileptic effect. Trick the body into thinking it was starving by taking away its primary fuel of carbohydrates and forcing it to subsist on an all-fat diet, and you could create that antiepileptic effect as long as necessary.

The diet was quickly adopted and widely used through the 1930s. And then, almost as fast as it had appeared, the keto diet disappeared. When Dilantin was first used as an antiepileptic drug in 1938, its success steered medical minds toward pharmaceutical solutions. A generation later, the diet had been all but forgotten. There was no scientific evidence that it worked, after all. More important, it was incredibly difficult to administer. Even in the 1990s, Millicent Kelly, Charlie Abrahams’s dietitian at Johns Hopkins, was planning menus with a calculator and a legal pad.

By 2000, more people were asking about keto, but most pediatric neurologists still would not prescribe it. That bias seemed ridiculous to J. Helen Cross, the principal investigator of the 2008 randomized keto trial at University College London. “I’d been dealing with complex epilepsy cases for 10 years, and it was quite clear to me that certain children did respond to the ketogenic diet,” Cross says. “But we in our institution — and I know we weren’t alone — were coming up against barriers to get the resources to do it. They’d say there’s no evidence it works. It’s a quack diet. There is no controlled data. So I wanted to prove that it did work once and for all, and do it in a way so that people couldn’t argue with it.”

It took five years to enroll and track enough patients to make the study credible and another two years to analyze the data and undergo the rigorous academic peer-review process. But since the study was published in 2008, it has answered doubts about keto’s clinical effectiveness.

Keto has now attracted attention from all corners of the neurological community. Two scientists at the National Institutes of Health are planning a study of its effectiveness in Parkinson’s patients. Papers published in the past two years suggest that keto may slow the growth of a brain tumor in mice. A biotechnology company named Accera is marketing a high-fat powder to Alzheimer’s patients that is supposed to reproduce the effects of ketosis, without the dietary restrictions of keto.

Still, there is one giant unanswered question: Why does keto work? Jong Rho, the head of pediatric neurology at the University of Calgary and the Alberta Children’s Hospital, theorizes that ketone bodies — the compounds made by the liver when the body burns fat for energy — protect brain cells from being damaged. Rho, who just received a $2 million, five-year grant from the National Institutes of Health to continue to investigate this theory, says experiments with epileptic mice suggest that extended time on the diet makes them more seizure-resistant.

Rho’s theory, however, only raises more questions. How would ketone bodies protect brain cells? Scientists don’t have a clue about how our cells react during ketosis. They don’t even know how much ketone bodies themselves matter. Until scientists understand the basic biological mechanisms, they can’t begin to embark on the long and costly process of drug development.

The success of the pediatric diet seems to have made it easier for keto scientists to get money for this basic research. “Before Helen’s study, we all had a clear sense that keto worked,” says Carl Stafstrom, the head of pediatric neurology at the University of Wisconsin, “but we couldn’t say in a grant proposal that the diet has been proven to be effective. Now we can.” There are recently financed studies, for example, exploring why the body resists ketosis and exploring compounds that might trigger the antiepileptic mechanism.

[...]

There has been so much buzz around keto that neurologists and scientists have begun wondering what else it can do. Could it be used to treat seizures in adults? What about Parkinson’s, Alzheimer’s, A.L.S. and certain cancers? Tumors typically need glucose to grow. There is very little of this simple sugar in a keto diet, and there have been interesting results with mice that suggest the diet might slow tumor growth. These scientific explorations are in their early stages and may not amount to much. Nonetheless, researchers are taking them seriously.

Fantastic article on the ketogenic diet for the treatment of epilepsy.

Comments

Popular posts from this blog

Insulin Resistance- cause of ADD, diabetes, narcolepsy, etc etc

Insulin Resistance Insulin Resistance Have you been diagnosed with clinical depression? Heart disease? Type II, or adult, diabetes? Narcolepsy? Are you, or do you think you might be, an alcoholic? Do you gain weight around your middle in spite of faithfully dieting? Are you unable to lose weight? Does your child have ADHD? If you have any one of these symptoms, I wrote this article for you. Believe it or not, the same thing can cause all of the above symptoms. I am not a medical professional. I am not a nutritionist. The conclusions I have drawn from my own experience and observations are not rocket science. A diagnosis of clinical depression is as ordinary as the common cold today. Prescriptions for Prozac, Zoloft, Wellbutrin, etc., are written every day. Genuine clinical depression is a very serious condition caused by serotonin levels in the brain. I am not certain, however, that every diagnosis of depression is the real thing. My guess is that about 10 percent of the people taking

Could Narcolepsy be caused by gluten? :: Kitchen Table Hypothesis

Kitchen Table Hypothesis from www.zombieinstitute.net - Heidi's new site It's commonly known that a severe allergy to peanuts can cause death within minutes. What if there were an allergy that were delayed for hours and caused people to fall asleep instead? That is what I believe is happening in people with Narcolepsy. Celiac disease is an allergy to gliadin, a specific gluten protein found in grains such as wheat, barley and rye. In celiac disease the IgA antigliadin antibody is produced after ingestion of gluten. It attacks the gluten, but also mistakenly binds to and creates an immune reaction in the cells of the small intestine causing severe damage. There is another form of gluten intolerance, Dermatitis Herpetiformis, in which the IgA antigliadin bind to proteins in the skin, causing blisters, itching and pain. This can occur without any signs of intestinal damage. Non-celiac gluten sensitivity is a similar autoimmune reaction to gliadin, however it usually involves the

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed Scientists at John Carroll University, working in its Lighting Innovations Institute, have developed an affordable accessory that appears to reduce the symptoms of ADHD. Their discovery also has also been shown to improve sleep patterns among people who have difficulty falling asleep. The John Carroll researchers have created glasses designed to block blue light, therefore altering a person's circadian rhythm, which leads to improvement in ADHD symptoms and sleep disorders. […] How the Glasses Work The individual puts on the glasses a couple of hours ahead of bedtime, advancing the circadian rhythm. The special glasses block the blue rays that cause a delay in the start of the flow of melatonin, the sleep hormone. Normally, melatonin flow doesn't begin until after the individual goes into darkness. Studies indicate that promoting the earlier release of melatonin results in a marked decline of ADHD symptoms. Bett