Skip to main content

Psychiatric Times :: The Role of Cortisol and Depression: Exploring New Opportunities for Treatments

Psychiatric Times

It is now established that in conditions in which there are raised endogenous or exogenous corticosteroids (including Cushing's disease and severe mood disorders), there is also a significant degree of cognitive impairment (Wolkowitz et al., 1990). Studies in experimental animals have shown deficits in learning and memory following chronic administration of glucocorticoids (Lupien and McEwen, 1997), as well as marked atrophy of neurons in the hippocampal formation. It has been postulated that a similar neurodegenerative effect of cortisol may underlie some of the cognitive deficits observed in humans suffering from severe mood disorders (Sapolsky et al., 1986).

While there is substantial evidence to indicate that the hippocampus is particularly sensitive to elevation of glucocorticoids, the effects on other areas of the brain are less clear. Recent clinical data have reported that cortisol treatment induces cognitive deficits in healthy humans, and these deficits appear to be mediated in part via the frontal lobe, suggesting that this brain area may also be sensitive to the neurodegenerative effects of cortisol (Young et al., 1999). The deficits in healthy volunteer study participants are reversible, but this may not be the case with the cognitive deficits induced by hypercortisolemia associated with mood disorders (Ferrier et al., 1999; Young et al., 1999). A more recent study indicated that the frontal lobes are adversely affected by cortisol, which may illustrate a similar pattern of degeneration to that which occurs in the hippocampus (Young et al., in press). Moreover, the traditional assumption that patients with severe mood disorders make a full inter-episode recovery has recently been challenged. Although cognitive deficits do show some improvement on remission of affective symptoms (paralleling the return of normal HPA function), this improvement is not sustained. Studies have identified a specific deficit in executive control in a cohort of patients prospectively verified as euthymic (Thompson et al., 2001), replicating an earlier finding by our group (Ferrier et al., 1999).

This one is a little dense, but basically cortisol creates depression. It also messes with your prefrontal cortex and executive functions of the brain. Like ADD does. Alcohol, caffeine, lack of sleep and external stressors increase cortisol.

Comments

Popular posts from this blog

Insulin Resistance- cause of ADD, diabetes, narcolepsy, etc etc

Insulin Resistance Insulin Resistance Have you been diagnosed with clinical depression? Heart disease? Type II, or adult, diabetes? Narcolepsy? Are you, or do you think you might be, an alcoholic? Do you gain weight around your middle in spite of faithfully dieting? Are you unable to lose weight? Does your child have ADHD? If you have any one of these symptoms, I wrote this article for you. Believe it or not, the same thing can cause all of the above symptoms. I am not a medical professional. I am not a nutritionist. The conclusions I have drawn from my own experience and observations are not rocket science. A diagnosis of clinical depression is as ordinary as the common cold today. Prescriptions for Prozac, Zoloft, Wellbutrin, etc., are written every day. Genuine clinical depression is a very serious condition caused by serotonin levels in the brain. I am not certain, however, that every diagnosis of depression is the real thing. My guess is that about 10 percent of the people taking ...

Could Narcolepsy be caused by gluten? :: Kitchen Table Hypothesis

Kitchen Table Hypothesis from www.zombieinstitute.net - Heidi's new site It's commonly known that a severe allergy to peanuts can cause death within minutes. What if there were an allergy that were delayed for hours and caused people to fall asleep instead? That is what I believe is happening in people with Narcolepsy. Celiac disease is an allergy to gliadin, a specific gluten protein found in grains such as wheat, barley and rye. In celiac disease the IgA antigliadin antibody is produced after ingestion of gluten. It attacks the gluten, but also mistakenly binds to and creates an immune reaction in the cells of the small intestine causing severe damage. There is another form of gluten intolerance, Dermatitis Herpetiformis, in which the IgA antigliadin bind to proteins in the skin, causing blisters, itching and pain. This can occur without any signs of intestinal damage. Non-celiac gluten sensitivity is a similar autoimmune reaction to gliadin, however it usually involves the...

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed Scientists at John Carroll University, working in its Lighting Innovations Institute, have developed an affordable accessory that appears to reduce the symptoms of ADHD. Their discovery also has also been shown to improve sleep patterns among people who have difficulty falling asleep. The John Carroll researchers have created glasses designed to block blue light, therefore altering a person's circadian rhythm, which leads to improvement in ADHD symptoms and sleep disorders. […] How the Glasses Work The individual puts on the glasses a couple of hours ahead of bedtime, advancing the circadian rhythm. The special glasses block the blue rays that cause a delay in the start of the flow of melatonin, the sleep hormone. Normally, melatonin flow doesn't begin until after the individual goes into darkness. Studies indicate that promoting the earlier release of melatonin results in a marked decline of ADHD symptoms. Bett...