Skip to main content

Lowering the Bar on the Low-Fat Diet | JAMA | JAMA Network

Lowering the Bar on the Low-Fat Diet | JAMA | JAMA Network:

David S. Ludwig, MD, PhD1

The recent revelation that the sugar industry attempted to manipulate science in the 1960s1 has once again focused attention on the quality of the scientific evidence in the field of nutrition and how best to prevent diet-related chronic disease.



 Beginning in the 1970s, the US government and major professional nutrition organizations recommended that individuals in the United States eat a low-fat/high-carbohydrate diet, launching arguably the largest public health experiment in history. Throughout the ensuing 40 years, the prevalence of obesity and diabetes increased several-fold, even as the proportion of fat in the US diet decreased by 25%. Recognizing new evidence that consumption of processed carbohydrates—white bread, white rice, chips, crackers, cookies, and sugary drinks—but not total fat has contributed importantly to these epidemics, the 2015 USDA Dietary Guidelines for Americans essentially eliminated the upper limit on dietary fat intake.2 However, a comprehensive examination of this massive public health failure has not been conducted. Consequently, significant harms persist, with the low-fat diet remaining entrenched in public consciousness and food policy. In addition, critical scientific questions have been muddled.



[...]




To facilitate this change, the Healthy People 2000 goals included a call to the food industry to increase from 2500 items “to at least 5000 brand items the availability of processed food products that are reduced in fat.” The food industry followed suit, systematically replacing fat in food products with starch and sugar.

As a result of these efforts, dietary fat decreased to near the recommended limit of 30% total energy. But contrary to prediction, total calorie intake increased substantially, the prevalence of obesity tripled, the incidence of type 2 diabetes increased many-fold, and the decades-long decrease in cardiovascular disease plateaued and may reverse, despite greater use of preventive drugs and surgical procedures. However, other changes in diet (such as meals away from home) and lifestyle (such as physical activity level) may have influenced these trends.

Recent research suggests that the focus on dietary fat reduction has directly contributed to this growing burden of chronic disease.2,69 In contrast to older, cross-sectional designs, high-quality prospective observational studies consistently show that total fat intake does not predict change in body fat, after controlling for confounding and reverse causation. Some foods previously relegated to the top of the pyramid because of high fat content (nuts, full-fat yogurt) are associated with lower rates of weight gain than common high-carbohydrate foods (processed grains, potato products, sugary beverages).9 Moreover, meta-analyses of clinical trials report that low-fat diets are inferior to comparisons controlled for treatment intensity, including low-carbohydrate diets,6 Mediterranean diets, and all higher-fat diets. Of particular importance, the major low-fat diet studies, such as the Women’s Health Initiative clinical trial and Look Ahead, failed to reduce risk for heart disease despite use of lower-intensity control conditions. In contrast, the PREDIMED study was terminated early when cardiovascular disease incidence decreased more rapidly than expected in the higher-fat diet groups compared with the low-fat control. Consistent with these findings, men and women adhering to low-fat/high-carbohydrate diets had higher, not lower, rates of premature death, although the type of dietary fats consumed importantly modified risk.7

One reason for the apparent failure of low-fat diets is that they may elicit biological adaptations—increasing hunger, slowing metabolic rate, and other hallmarks of the starvation response—that antagonize ongoing weight loss. Preliminary studies suggest that the reduced insulin secretion with low-carbohydrate and low-glycemic-index diets may attenuate these adaptations, facilitating long-term weight-loss maintenance and reducing diseases associated with hyperinsulinemia (the carbohydrate-insulin model).8

Comments

Popular posts from this blog

Insulin Resistance- cause of ADD, diabetes, narcolepsy, etc etc

Insulin Resistance Insulin Resistance Have you been diagnosed with clinical depression? Heart disease? Type II, or adult, diabetes? Narcolepsy? Are you, or do you think you might be, an alcoholic? Do you gain weight around your middle in spite of faithfully dieting? Are you unable to lose weight? Does your child have ADHD? If you have any one of these symptoms, I wrote this article for you. Believe it or not, the same thing can cause all of the above symptoms. I am not a medical professional. I am not a nutritionist. The conclusions I have drawn from my own experience and observations are not rocket science. A diagnosis of clinical depression is as ordinary as the common cold today. Prescriptions for Prozac, Zoloft, Wellbutrin, etc., are written every day. Genuine clinical depression is a very serious condition caused by serotonin levels in the brain. I am not certain, however, that every diagnosis of depression is the real thing. My guess is that about 10 percent of the people taking ...

Could Narcolepsy be caused by gluten? :: Kitchen Table Hypothesis

Kitchen Table Hypothesis from www.zombieinstitute.net - Heidi's new site It's commonly known that a severe allergy to peanuts can cause death within minutes. What if there were an allergy that were delayed for hours and caused people to fall asleep instead? That is what I believe is happening in people with Narcolepsy. Celiac disease is an allergy to gliadin, a specific gluten protein found in grains such as wheat, barley and rye. In celiac disease the IgA antigliadin antibody is produced after ingestion of gluten. It attacks the gluten, but also mistakenly binds to and creates an immune reaction in the cells of the small intestine causing severe damage. There is another form of gluten intolerance, Dermatitis Herpetiformis, in which the IgA antigliadin bind to proteins in the skin, causing blisters, itching and pain. This can occur without any signs of intestinal damage. Non-celiac gluten sensitivity is a similar autoimmune reaction to gliadin, however it usually involves the...

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed Scientists at John Carroll University, working in its Lighting Innovations Institute, have developed an affordable accessory that appears to reduce the symptoms of ADHD. Their discovery also has also been shown to improve sleep patterns among people who have difficulty falling asleep. The John Carroll researchers have created glasses designed to block blue light, therefore altering a person's circadian rhythm, which leads to improvement in ADHD symptoms and sleep disorders. […] How the Glasses Work The individual puts on the glasses a couple of hours ahead of bedtime, advancing the circadian rhythm. The special glasses block the blue rays that cause a delay in the start of the flow of melatonin, the sleep hormone. Normally, melatonin flow doesn't begin until after the individual goes into darkness. Studies indicate that promoting the earlier release of melatonin results in a marked decline of ADHD symptoms. Bett...