Skip to main content

The Role of Insulin in Human Brain Glucose Metabolism: An 18Fluoro-Deoxyglucose Positron Emission Tomography Study -- Bingham et al. 51 (12): 3384 -- Diabetes

The Role of Insulin in Human Brain Glucose Metabolism: An 18Fluoro-Deoxyglucose Positron Emission Tomography Study -- Bingham et al. 51 (12): 3384 -- Diabetes

Our study results challenge the accepted view that human brain glucose uptake is an entirely insulin-independent process. Instead, our data suggest that there is a significant element of brain glucose uptake that is insulin sensitive, with a dose-response curve that is shifted well to the left of dose-response curves for other insulin-sensitive tissues, such as muscle or liver. Previous studies have demonstrated no change in rate of brain glucose metabolism in response to elevations of circulating insulin above the basal (fasting) range (19,22). Our data, examining the effect of basal insulin replacement during somatostatin infusion, show that brain glucose uptake is however partially insulin sensitive, as there was a significant reduction in global brain glucose uptake when circulating insulin levels were reduced below this. Coupled with the published data showing no effect of increasing circulating insulin above fasting levels, we can infer that brain glucose metabolism is maximally stimulated at these fasting insulin concentrations. The magnitude of the effect may not seem large, but this is because it is superimposed on a background of insulin-independent brain glucose uptake. A 15% increase in brain glucose uptake secondary to insulin stimulation may have clinical significance.

It would follow then that insulin insensitivity caused by lots of carbs would block the flow of glucose to your brain as well as your body.

Comments

Popular posts from this blog

Insulin Resistance- cause of ADD, diabetes, narcolepsy, etc etc

Insulin Resistance Insulin Resistance Have you been diagnosed with clinical depression? Heart disease? Type II, or adult, diabetes? Narcolepsy? Are you, or do you think you might be, an alcoholic? Do you gain weight around your middle in spite of faithfully dieting? Are you unable to lose weight? Does your child have ADHD? If you have any one of these symptoms, I wrote this article for you. Believe it or not, the same thing can cause all of the above symptoms. I am not a medical professional. I am not a nutritionist. The conclusions I have drawn from my own experience and observations are not rocket science. A diagnosis of clinical depression is as ordinary as the common cold today. Prescriptions for Prozac, Zoloft, Wellbutrin, etc., are written every day. Genuine clinical depression is a very serious condition caused by serotonin levels in the brain. I am not certain, however, that every diagnosis of depression is the real thing. My guess is that about 10 percent of the people taking

Could Narcolepsy be caused by gluten? :: Kitchen Table Hypothesis

Kitchen Table Hypothesis from www.zombieinstitute.net - Heidi's new site It's commonly known that a severe allergy to peanuts can cause death within minutes. What if there were an allergy that were delayed for hours and caused people to fall asleep instead? That is what I believe is happening in people with Narcolepsy. Celiac disease is an allergy to gliadin, a specific gluten protein found in grains such as wheat, barley and rye. In celiac disease the IgA antigliadin antibody is produced after ingestion of gluten. It attacks the gluten, but also mistakenly binds to and creates an immune reaction in the cells of the small intestine causing severe damage. There is another form of gluten intolerance, Dermatitis Herpetiformis, in which the IgA antigliadin bind to proteins in the skin, causing blisters, itching and pain. This can occur without any signs of intestinal damage. Non-celiac gluten sensitivity is a similar autoimmune reaction to gliadin, however it usually involves the

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed Scientists at John Carroll University, working in its Lighting Innovations Institute, have developed an affordable accessory that appears to reduce the symptoms of ADHD. Their discovery also has also been shown to improve sleep patterns among people who have difficulty falling asleep. The John Carroll researchers have created glasses designed to block blue light, therefore altering a person's circadian rhythm, which leads to improvement in ADHD symptoms and sleep disorders. […] How the Glasses Work The individual puts on the glasses a couple of hours ahead of bedtime, advancing the circadian rhythm. The special glasses block the blue rays that cause a delay in the start of the flow of melatonin, the sleep hormone. Normally, melatonin flow doesn't begin until after the individual goes into darkness. Studies indicate that promoting the earlier release of melatonin results in a marked decline of ADHD symptoms. Bett