Skip to main content

ScienceDirect - Nutrition : Body fat distribution, insulin resistance, and metabolic diseases

ScienceDirect - Nutrition : Body fat distribution, insulin resistance, and metabolic diseases
Body fat distribution, insulin resistance, and metabolic diseases

Per Björntorp MD, PhDCorresponding Author Contact Information
From the Department of Heart and Lung Diseases, Sahlgren's Hospital, University of Göteborg, Göteborg, Sweden

Accepted 19 February 1997. ;
Available online 5 February 1998.

Purchase the full-text article



References and further reading may be available for this article. To view references and further reading you must purchase this article.

Abstract

Obesity has now developed into a world-wide epidemic and is associated with large economic costs and prevalent diseases, particularly with central body fat distribution. Insulin resistance almost invariably occurs, and might be a major trigger for disease-generating mechanisms either directly or via generation of other disease precursors (“risk factors”).

The hypothalamo-pituitary-adrenal (HPA) axis seems to be hypersensitive in abdominal obesity, a statement supported by increased responses to challenges from the adrenals to central regulatory centers. Furthermore, the feedback control by central glucocorticoid receptors is blunted, probably a secondary, functional consequence of an elevated HPA axis activity, because the receptor gene appears normal. Secretion of sex steroid and growth hormones is diminished, which might be a consequence of elevated HPA axis activity. Hyperandrogenicity in women is probably of adrenal origin and another consequence of the sensitivity of the HPA axis.

The endocrine abnormalities thus are periodically elevated cortisol and androgen (women) concentrations, as well as low secretions of gender-specific steroid and growth hormones. Since elevated cortisol, and low sex-steroid and growth hormone secretions, probably direct storage fat to visceral depots, the multiple endocrine abnormalities probably cause enlargement of these depots. Furthermore, these hormonal abnormalities most likely at least contribute to the creation of insulin resistance with additional effects of elevated fatty acids from central fat depots, which are sensitive to lipid mobilization agents.

This chain of events indicates the central role of the hypersensitive HPA axis. Known causes of sensitization of this axis have been identified in subjects with abdominal obesity, including depression, anxiety, alcohol, and smoking. A common cause of HPA axis activation is perceived stress, with a depressive, defeatist, or “helplessness” reaction. In subjects with abdominal preponderance of body fat stores a number of psychosocial and socioeconomic handicaps have been identified, hypothetically predisposing to such reactions. In a primate model (monkeys), mild psychosocial stress is followed by identical psychological, endocrine, anthropometric, and metabolic abnormalities as in humans with abdominal preponderance of body fat stores, including early signs of diabetes and cardiovascular disease. These findings strongly support the interpretation that a stress reaction activating the HPA axis is involved also in the human syndrome.

Interventions with normalization of the endocrine perturbations are followed by clear improvements of the multiple abnormalities in both clinical, experimental, cellular and molecular studies, suggesting that the pathogenesis of abdominal preponderance of body fat and its endocrine, anthropometric and metabolic abnormalities are indeed consequences of the endocrine abnormalities identified.

Author Keywords: abdominal obesity; cortisol; sex steroids; growth hormone; metabolism; psychosocial factors; socioeconomic factors

Comments

Popular posts from this blog

Insulin Resistance- cause of ADD, diabetes, narcolepsy, etc etc

Insulin Resistance Insulin Resistance Have you been diagnosed with clinical depression? Heart disease? Type II, or adult, diabetes? Narcolepsy? Are you, or do you think you might be, an alcoholic? Do you gain weight around your middle in spite of faithfully dieting? Are you unable to lose weight? Does your child have ADHD? If you have any one of these symptoms, I wrote this article for you. Believe it or not, the same thing can cause all of the above symptoms. I am not a medical professional. I am not a nutritionist. The conclusions I have drawn from my own experience and observations are not rocket science. A diagnosis of clinical depression is as ordinary as the common cold today. Prescriptions for Prozac, Zoloft, Wellbutrin, etc., are written every day. Genuine clinical depression is a very serious condition caused by serotonin levels in the brain. I am not certain, however, that every diagnosis of depression is the real thing. My guess is that about 10 percent of the people taking ...

Could Narcolepsy be caused by gluten? :: Kitchen Table Hypothesis

Kitchen Table Hypothesis from www.zombieinstitute.net - Heidi's new site It's commonly known that a severe allergy to peanuts can cause death within minutes. What if there were an allergy that were delayed for hours and caused people to fall asleep instead? That is what I believe is happening in people with Narcolepsy. Celiac disease is an allergy to gliadin, a specific gluten protein found in grains such as wheat, barley and rye. In celiac disease the IgA antigliadin antibody is produced after ingestion of gluten. It attacks the gluten, but also mistakenly binds to and creates an immune reaction in the cells of the small intestine causing severe damage. There is another form of gluten intolerance, Dermatitis Herpetiformis, in which the IgA antigliadin bind to proteins in the skin, causing blisters, itching and pain. This can occur without any signs of intestinal damage. Non-celiac gluten sensitivity is a similar autoimmune reaction to gliadin, however it usually involves the...

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed Scientists at John Carroll University, working in its Lighting Innovations Institute, have developed an affordable accessory that appears to reduce the symptoms of ADHD. Their discovery also has also been shown to improve sleep patterns among people who have difficulty falling asleep. The John Carroll researchers have created glasses designed to block blue light, therefore altering a person's circadian rhythm, which leads to improvement in ADHD symptoms and sleep disorders. […] How the Glasses Work The individual puts on the glasses a couple of hours ahead of bedtime, advancing the circadian rhythm. The special glasses block the blue rays that cause a delay in the start of the flow of melatonin, the sleep hormone. Normally, melatonin flow doesn't begin until after the individual goes into darkness. Studies indicate that promoting the earlier release of melatonin results in a marked decline of ADHD symptoms. Bett...