Skip to main content

Sugar Can Be Addictive: Animal Studies Show Sugar Dependence

Sugar Can Be Addictive: Animal Studies Show Sugar Dependence:

"A Princeton University scientist will present new evidence today demonstrating that sugar can be an addictive substance, wielding its power over the brains of lab animals in a manner similar to many drugs of abuse.

Professor Bart Hoebel and his team in the Department of Psychology and the Princeton Neuroscience Institute have been studying signs of sugar addiction in rats for years. Until now, the rats under study have met two of the three elements of addiction. They have demonstrated a behavioral pattern of increased intake and then showed signs of withdrawal. His current experiments captured craving and relapse to complete the picture.

"If bingeing on sugar is really a form of addiction, there should be long-lasting effects in the brains of sugar addicts," Hoebel said. "Craving and relapse are critical components of addiction, and we have been able to demonstrate these behaviors in sugar-bingeing rats in a number of ways."

Hoebel will report on profound behavioral changes in rats that, through experimental conditions, have been trained to become dependent on high doses of sugar.

"We have the first set of comprehensive studies showing the strong suggestion of sugar addiction in rats and a mechanism that might underlie it," Hoebel said. The findings eventually could have implications for the treatment of humans with eating disorders, he said.

Lab animals, in Hoebel's experiments, that were denied sugar for a prolonged period after learning to binge worked harder to get it when it was reintroduced to them. They consumed more sugar than they ever had before, suggesting craving and relapse behavior. Their motivation for sugar had grown. "In this case, abstinence makes the heart grow fonder," Hoebel said.

The rats drank more alcohol than normal after their sugar supply was cut off, showing that the bingeing behavior had forged changes in brain function. These functions served as "gateways" to other paths of destructive behavior, such as increased alcohol intake. And, after receiving a dose of amphetamine normally so minimal it has no effect, they became significantly hyperactive. The increased sensitivity to the psychostimulant is a long-lasting brain effect that can be a component of addiction, Hoebel said.

Hoebel has shown that rats eating large amounts of sugar when hungry, a phenomenon he describes as sugar-bingeing, undergo neurochemical changes in the brain that appear to mimic those produced by substances of abuse, including cocaine, morphine and nicotine. Sugar induces behavioral changes, too. "In certain models, sugar-bingeing causes long-lasting effects in the brain and increases the inclination to take other drugs of abuse, such as alcohol," Hoebel said.

Hoebel and his team also have found that a chemical known as dopamine is released in a region of the brain known as the nucleus accumbens when hungry rats drink a sugar solution. This chemical signal is thought to trigger motivation and, eventually with repetition, addiction.

Hungry rats that binge on sugar provoke a surge of dopamine in their brains. After a month, the structure of the brains of these rats adapts to increased dopamine levels, showing fewer of a certain type of dopamine receptor than they used to have and more opioid receptors. These dopamine and opioid systems are involved in motivation and reward, systems that control wanting and liking something. Similar changes also are seen in the brains of rats on cocaine and heroin.

In experiments, the researchers have been able to induce signs of withdrawal in the lab animals by taking away their sugar supply. The rats' brain levels of dopamine dropped and, as a result, they exhibited anxiety as a sign of withdrawal. The rats' teeth chattered, and the creatures were unwilling to venture forth into the open arm of their maze, preferring to stay in a tunnel area. Normally rats like to explore their environment, but the rats in sugar withdrawal were too anxious to explore."

Comments

Popular posts from this blog

Insulin Resistance- cause of ADD, diabetes, narcolepsy, etc etc

Insulin Resistance Insulin Resistance Have you been diagnosed with clinical depression? Heart disease? Type II, or adult, diabetes? Narcolepsy? Are you, or do you think you might be, an alcoholic? Do you gain weight around your middle in spite of faithfully dieting? Are you unable to lose weight? Does your child have ADHD? If you have any one of these symptoms, I wrote this article for you. Believe it or not, the same thing can cause all of the above symptoms. I am not a medical professional. I am not a nutritionist. The conclusions I have drawn from my own experience and observations are not rocket science. A diagnosis of clinical depression is as ordinary as the common cold today. Prescriptions for Prozac, Zoloft, Wellbutrin, etc., are written every day. Genuine clinical depression is a very serious condition caused by serotonin levels in the brain. I am not certain, however, that every diagnosis of depression is the real thing. My guess is that about 10 percent of the people taking

Could Narcolepsy be caused by gluten? :: Kitchen Table Hypothesis

Kitchen Table Hypothesis from www.zombieinstitute.net - Heidi's new site It's commonly known that a severe allergy to peanuts can cause death within minutes. What if there were an allergy that were delayed for hours and caused people to fall asleep instead? That is what I believe is happening in people with Narcolepsy. Celiac disease is an allergy to gliadin, a specific gluten protein found in grains such as wheat, barley and rye. In celiac disease the IgA antigliadin antibody is produced after ingestion of gluten. It attacks the gluten, but also mistakenly binds to and creates an immune reaction in the cells of the small intestine causing severe damage. There is another form of gluten intolerance, Dermatitis Herpetiformis, in which the IgA antigliadin bind to proteins in the skin, causing blisters, itching and pain. This can occur without any signs of intestinal damage. Non-celiac gluten sensitivity is a similar autoimmune reaction to gliadin, however it usually involves the

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed Scientists at John Carroll University, working in its Lighting Innovations Institute, have developed an affordable accessory that appears to reduce the symptoms of ADHD. Their discovery also has also been shown to improve sleep patterns among people who have difficulty falling asleep. The John Carroll researchers have created glasses designed to block blue light, therefore altering a person's circadian rhythm, which leads to improvement in ADHD symptoms and sleep disorders. […] How the Glasses Work The individual puts on the glasses a couple of hours ahead of bedtime, advancing the circadian rhythm. The special glasses block the blue rays that cause a delay in the start of the flow of melatonin, the sleep hormone. Normally, melatonin flow doesn't begin until after the individual goes into darkness. Studies indicate that promoting the earlier release of melatonin results in a marked decline of ADHD symptoms. Bett