Skip to main content

Print - Neurotechnology: Growing a Brain in Switzerland - International - SPIEGEL ONLINE - News

Print - Neurotechnology: Growing a Brain in Switzerland - International - SPIEGEL ONLINE - News

Growing a Brain in Switzerland

By Manfred Dworschak

A network of artificial nerves is growing in a Swiss supercomputer -- meant to simulate a natural brain, cell-for-cell. The researchers at work on "Blue Brain" promise new insights into the sources of human consciousness.

The machine is beautiful as it wakes up -- nerve cells flicker on the screen in soft pastel tones, electrical charges flash through a maze of synapses. The brain, just after being switched on, seems a little sleepy, but gentle bursts of current bring it fully to life.

This unprecedented piece of hardware consists of about 10,000 computer chips that act like real nerve cells. To simulate a natural brain, part of the cerebral cortex of young rats was painstakingly replicated in the computer, cell by cell, together with the branched tree-like structure of the synapses.

The simulation was created at the Technical University in Lausanne, Switzerland, where 35 researchers participate in maintaining this artificial brain. It runs on one of the world's most powerful supercomputers, but soon even that computer will be too small. The goal is to build a much bigger electronic thinking machine -- one that would ultimately replicate the human brain.

A project this ambitious would have been ridiculed a few years ago. "Today we have the computers we need," says biologist Henry Markram, 44, the project's director. "And we know enough to begin."

Markram knows about the problems his group can look forward to. "But if we don't build the brain," he says, "we'll never understand how it works." In fact, there have been tremendous advances in brain research for years; but answers to the big questions are as elusive as ever. How does consciousness develop within the electric orchestra of cells? How exactly does a spark of intellect ignite from the interplay among genes, proteins and messenger substances?

The Lausanne model, dubbed "Blue Brain," is the most radical attempt so far to investigate the mystery of consciousness. The idea is seductively simple: To determine how the mind emerges from biology, replicate the biology. It's a task that requires enormous patience and attention to detail, a process that ultimately means mimicking nature one molecule at a time.

Though the first artificial brain may seem simple, it will be a useful model. Brain researchers can use it to reproduce functions from the real organ and test their theories. As they build in new processes, the model grows ever more detailed -- a sort of wiki project of the mind. It also offers an important advantage over a natural brain, since it lets researchers monitor each and every (simulated) mental activity in the machine.

But -- has there been mental activity?

The newborn "Blue Brain" surprised the designers with its willfulness from the very first day. It had hardly been fed electrical impulses before strange patterns began to appear on the screen with the lightning-like flashes produced by cells that scientists recognize from actual thought processes. Groups of neurons started becoming attuned to one another until they were firing in rhythm. "It happened entirely on its own," says Markram. "Spontaneously."

Building the electronic rat brain

Ten thousand artificial nerve cells have been interwoven in Lausanne, and the researchers aim to increase the number to one million within the next year. Which doesn't mean they're satisfied: The work is scheduled right now to last beyond 2015. By then, unless the project proves too ambitious, Markram and his team hope to be ready for their primary goal: a computer model of an entire human brain -- right now almost a sheer flight of fancy, given the 100 billion cells they would have to engineer.

Comments

Popular posts from this blog

Insulin Resistance- cause of ADD, diabetes, narcolepsy, etc etc

Insulin Resistance Insulin Resistance Have you been diagnosed with clinical depression? Heart disease? Type II, or adult, diabetes? Narcolepsy? Are you, or do you think you might be, an alcoholic? Do you gain weight around your middle in spite of faithfully dieting? Are you unable to lose weight? Does your child have ADHD? If you have any one of these symptoms, I wrote this article for you. Believe it or not, the same thing can cause all of the above symptoms. I am not a medical professional. I am not a nutritionist. The conclusions I have drawn from my own experience and observations are not rocket science. A diagnosis of clinical depression is as ordinary as the common cold today. Prescriptions for Prozac, Zoloft, Wellbutrin, etc., are written every day. Genuine clinical depression is a very serious condition caused by serotonin levels in the brain. I am not certain, however, that every diagnosis of depression is the real thing. My guess is that about 10 percent of the people taking ...

Could Narcolepsy be caused by gluten? :: Kitchen Table Hypothesis

Kitchen Table Hypothesis from www.zombieinstitute.net - Heidi's new site It's commonly known that a severe allergy to peanuts can cause death within minutes. What if there were an allergy that were delayed for hours and caused people to fall asleep instead? That is what I believe is happening in people with Narcolepsy. Celiac disease is an allergy to gliadin, a specific gluten protein found in grains such as wheat, barley and rye. In celiac disease the IgA antigliadin antibody is produced after ingestion of gluten. It attacks the gluten, but also mistakenly binds to and creates an immune reaction in the cells of the small intestine causing severe damage. There is another form of gluten intolerance, Dermatitis Herpetiformis, in which the IgA antigliadin bind to proteins in the skin, causing blisters, itching and pain. This can occur without any signs of intestinal damage. Non-celiac gluten sensitivity is a similar autoimmune reaction to gliadin, however it usually involves the...

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed

Blue-blocking Glasses To Improve Sleep And ADHD Symptoms Developed Scientists at John Carroll University, working in its Lighting Innovations Institute, have developed an affordable accessory that appears to reduce the symptoms of ADHD. Their discovery also has also been shown to improve sleep patterns among people who have difficulty falling asleep. The John Carroll researchers have created glasses designed to block blue light, therefore altering a person's circadian rhythm, which leads to improvement in ADHD symptoms and sleep disorders. […] How the Glasses Work The individual puts on the glasses a couple of hours ahead of bedtime, advancing the circadian rhythm. The special glasses block the blue rays that cause a delay in the start of the flow of melatonin, the sleep hormone. Normally, melatonin flow doesn't begin until after the individual goes into darkness. Studies indicate that promoting the earlier release of melatonin results in a marked decline of ADHD symptoms. Bett...