ScienceDaily: Space Sunshade Might Be Feasible In Global Warming Emergency: "The possibility that global warming will trigger abrupt climate change is something people might not want to think about.
The graphic shows the 2 foot-diameter flyers at L1. They are transparent, but blur out transmitted light into a donut, as shown for the background stars. The transmitted sunlight is also spread out, so it misses the Earth. This way of removing the light avoids radiation pressure, which would otherwise degrade the L1 orbit. (Illustration: Courtesy of UA Steward Observatory)
But University of Arizona astronomer Roger Angel thinks about it.
Angel, a University of Arizona Regents' Professor and one of the world's foremost minds in modern optics, directs the Steward Observatory Mirror Laboratory and the Center for Astronomical Adaptive Optics. He has won top honors for his many extraordinary conceptual ideas that have become practical engineering solutions for astronomy.
For the past year, Angel has been looking at ways to cool the Earth in an emergency. He's been studying the practicality of deploying a space sunshade in a global warming crisis, a crisis where it becomes clear that Earth is unmistakably headed for disastrous climate change within a decade or two."
[...]
The spacecraft would form a long, cylindrical cloud with a diameter about half that of Earth, and about 10 times longer. About 10 percent of the sunlight passing through the 60,000-mile length of the cloud, pointing lengthwise between the Earth and the sun, would be diverted away from our planet. The effect would be to uniformly reduce sunlight by about 2 percent over the entire planet, enough to balance the heating of a doubling of atmospheric carbon dioxide in Earth's atmosphere.
Researchers have proposed various alternatives for cooling the planet, including aerosol scatterers in the Earth's atmosphere. The idea for a space shade at L1 to deflect sunlight from Earth was first proposed by James Early of the Lawrence Livermore National Laboratory in 1989.
"The earlier ideas were for bigger, heavier structures that would have needed manufacture and launch from the moon, which is pretty futuristic," Angel said. "I wanted to make the sunshade from small 'flyers,' small, light and extremely thin spacecraft that could be completely assembled and launched from Earth, in stacks of a million at a time. When they reached L1, they would be dealt off the stack into a cloud. There's nothing to assemble in space."
The lightweight flyers designed by Angel would be made of a transparent film pierced with small holes. Each flyer would be two feet in diameter, 1/5000 of an inch thick and weigh about a gram, the same as a large butterfly. It would use "MEMS" technology mirrors as tiny sails that tilt to hold the flyers position in the orbiting constellation. The flyer's transparency and steering mechanism prevent it from being blown away by radiation pressure. Radiation pressure is the pressure from the sun's light itself.
Problem solved!
The graphic shows the 2 foot-diameter flyers at L1. They are transparent, but blur out transmitted light into a donut, as shown for the background stars. The transmitted sunlight is also spread out, so it misses the Earth. This way of removing the light avoids radiation pressure, which would otherwise degrade the L1 orbit. (Illustration: Courtesy of UA Steward Observatory)
But University of Arizona astronomer Roger Angel thinks about it.
Angel, a University of Arizona Regents' Professor and one of the world's foremost minds in modern optics, directs the Steward Observatory Mirror Laboratory and the Center for Astronomical Adaptive Optics. He has won top honors for his many extraordinary conceptual ideas that have become practical engineering solutions for astronomy.
For the past year, Angel has been looking at ways to cool the Earth in an emergency. He's been studying the practicality of deploying a space sunshade in a global warming crisis, a crisis where it becomes clear that Earth is unmistakably headed for disastrous climate change within a decade or two."
[...]
The spacecraft would form a long, cylindrical cloud with a diameter about half that of Earth, and about 10 times longer. About 10 percent of the sunlight passing through the 60,000-mile length of the cloud, pointing lengthwise between the Earth and the sun, would be diverted away from our planet. The effect would be to uniformly reduce sunlight by about 2 percent over the entire planet, enough to balance the heating of a doubling of atmospheric carbon dioxide in Earth's atmosphere.
Researchers have proposed various alternatives for cooling the planet, including aerosol scatterers in the Earth's atmosphere. The idea for a space shade at L1 to deflect sunlight from Earth was first proposed by James Early of the Lawrence Livermore National Laboratory in 1989.
"The earlier ideas were for bigger, heavier structures that would have needed manufacture and launch from the moon, which is pretty futuristic," Angel said. "I wanted to make the sunshade from small 'flyers,' small, light and extremely thin spacecraft that could be completely assembled and launched from Earth, in stacks of a million at a time. When they reached L1, they would be dealt off the stack into a cloud. There's nothing to assemble in space."
The lightweight flyers designed by Angel would be made of a transparent film pierced with small holes. Each flyer would be two feet in diameter, 1/5000 of an inch thick and weigh about a gram, the same as a large butterfly. It would use "MEMS" technology mirrors as tiny sails that tilt to hold the flyers position in the orbiting constellation. The flyer's transparency and steering mechanism prevent it from being blown away by radiation pressure. Radiation pressure is the pressure from the sun's light itself.
Problem solved!
Comments