Both Alcoholism and Chronic Smoking Can Damage The Brain's Prefrontal Cortex | HealtyWorld
Alcoholism: Clinical & Experimental Research
Alcoholism commonly co-occurs with chronic smoking.
Both alcohol and nicotine act on the brain’s “drug-reward pathway” or mesocorticolimbic system. New findings indicate that alcoholism and chronic smoking have a higher number of common genetic targets than previously believed.
Alcoholism is commonly associated with chronic smoking, and both alcohol and nicotine are believed to act on the same brain region. A study in the May issue of Alcoholism: Clinical & Experimental Research builds upon previous research that identified four potential alcohol-sensitive genes in the prefrontal cortex, finding that smoking also influences the expression of these genes.
“Nicotine and alcohol are both addictive drugs,” said Traute Flatscher-Bader, a postdoctoral research officer at the Alcohol Research Unit of the University of Queensland, Brisbane and corresponding author for the study. “They act on the same brain region, the ‘drug reward pathway’ or mesocorticolimbic system (MDS). The MDS contains the ‘feel-good’ neurotransmitter dopamine. Acute nicotine and alcohol cause an imbalance within the MDS by artificially increasing dopamine levels through direct and/or indirect modulation of dopaminergic neurons. While the long-term effect of alcoholism on the human brain has been investigated, surprisingly little is known about the long-term effect of nicotine on specific regions of the drug reward pathway in the human brain.”
“Studies into the molecular changes that alcohol and smoking have on the body and particularly the brain are crucial for understanding the disease state,” said Nikki Zuvela, a doctoral student in molecular neuroscience at The University of Queensland. “There are actual molecular changes to parts of the brain involved in developing addiction; most importantly, within those centres known to mediate desire, craving, pleasure, self control, decision making, fear and emotion.”
[...]
“Some of these changes manifest in alterations to the most important and elemental system we have: the neurotransmitters of the brain which relay messages and information to every part of our brain and body,” she said. “Changes to the release or reception of neurotransmitters effect downstream functioning of these centres and, as such, play an important role in the development of addiction and tolerance, craving and loss of impulse control witnessed in so many drug-affected states. It also helps to understand on a physiological and molecular level why the behaviour may be difficult to stop, despite knowledge of negative consequences.”
Alcoholism: Clinical & Experimental Research
Alcoholism commonly co-occurs with chronic smoking.
Both alcohol and nicotine act on the brain’s “drug-reward pathway” or mesocorticolimbic system. New findings indicate that alcoholism and chronic smoking have a higher number of common genetic targets than previously believed.
Alcoholism is commonly associated with chronic smoking, and both alcohol and nicotine are believed to act on the same brain region. A study in the May issue of Alcoholism: Clinical & Experimental Research builds upon previous research that identified four potential alcohol-sensitive genes in the prefrontal cortex, finding that smoking also influences the expression of these genes.
“Nicotine and alcohol are both addictive drugs,” said Traute Flatscher-Bader, a postdoctoral research officer at the Alcohol Research Unit of the University of Queensland, Brisbane and corresponding author for the study. “They act on the same brain region, the ‘drug reward pathway’ or mesocorticolimbic system (MDS). The MDS contains the ‘feel-good’ neurotransmitter dopamine. Acute nicotine and alcohol cause an imbalance within the MDS by artificially increasing dopamine levels through direct and/or indirect modulation of dopaminergic neurons. While the long-term effect of alcoholism on the human brain has been investigated, surprisingly little is known about the long-term effect of nicotine on specific regions of the drug reward pathway in the human brain.”
“Studies into the molecular changes that alcohol and smoking have on the body and particularly the brain are crucial for understanding the disease state,” said Nikki Zuvela, a doctoral student in molecular neuroscience at The University of Queensland. “There are actual molecular changes to parts of the brain involved in developing addiction; most importantly, within those centres known to mediate desire, craving, pleasure, self control, decision making, fear and emotion.”
[...]
“Some of these changes manifest in alterations to the most important and elemental system we have: the neurotransmitters of the brain which relay messages and information to every part of our brain and body,” she said. “Changes to the release or reception of neurotransmitters effect downstream functioning of these centres and, as such, play an important role in the development of addiction and tolerance, craving and loss of impulse control witnessed in so many drug-affected states. It also helps to understand on a physiological and molecular level why the behaviour may be difficult to stop, despite knowledge of negative consequences.”
Comments